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Abstract. We p r i en t  new results on the class of anisotropic. spiral walks in two 
dimensions. We find that these are directed problems in the sense that the usual relation. 
yu =2v, ,  holds between the length scale exponents. In contradistinction, however, they do 
not seem to fall in the usual directed universality class (q=l). Motivated by this, the 
universality classes of self-avoiding walks (SAW) on the square lattice are discussed. We 
argue that of the 8' models that exist by restricting the possible two step configurations 
there are four major categories with a total of seven generic types. The importance of 
reflection symmetry in this classification is discussed. 

1. Introduction 

The problem of quantifying the properties of self-avoiding walks has received 
continued widespread attention. especially since their asymptotic behaviour was seen 
as a critical phenomenon in polymer science [l]. There has been much accomplished 
in the two-dimensional scene where several exact results are believed to hold [2,3]. In 
the quest for a better understanding of isotropic walks (SAW), many variations on self- 
avoiding walks have been studied including directed (DW) 14-10], spiral (SSAW) 
[U, 121 and anisotropic spiral (ASSAW) walks [13-171. While many exact results are 
known about the first two of these groups, the last has resisted an analytic approach 
and has been the least studied.~Often the most interesting quantity in these problems 
is the mean square end-to-end distance (or radius of gyration) (Rfv) for walks of length 
N .  This is expected to scale with a power law; i.e. 

possibly with a confluent logarithmic factor. 
From the work of Nienhuis [2,3] the exact value of Y is generally accepted to be $ 

for SAW and the latest series work confirms this prediction 1181. For directed walks, 
Cardy 171 has shown that all such problems should have two exponents: one related to 
the preferred direction of the walk, v11, and one perpendicular to it, v L r  and that these 
should be 1 and 4 respectively: This result has been found in the exact solutions 1191 of 
directed problems. In the isotropic spiral case Blote and Hilhorst [12] have shown 

(R;) - N  log N 

and so Y=&. Lastly, the numerical work on anisotropic spiral walks [13, U] has 
provided estimates for v around 0.85, which is not close to any of the other results. For 
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one model in this class a second exponent [13] at approximately half the major value 
was found. This however, was not explained fully and the conclusion of [I31 was that 
there were isotropic members of this class. In the first part of this paper we show that 
this is not the case. We provide convincing numerical evidence that there exists two 
exponents for the models of this class, and provide an argument that gives the angle of 
the preferred direction exactly along the lines of [16]. The relationship 

A J Guttmann et a1 

v, = ZV, (3) 

holds for the exponents defined in the correct directions. Apparently, however, they 
do not have the directed values, and hence these models are not in the directed 
universality class. 

Now, given the advanced state of knowledge about these models provided by 
previous work we feel that it is apposite to provide a discussion of the universality 
classes of these modets here. Hence, in the second part of this paper an investigation 
of the models obtained by considering representatives of all ‘two-step’ rules has been 
undertaken. Some .of these, as well as similar models have been previously considered 
by Manna [13,14]. Exact enumeration coupled with the analysis technique of 
differential approximants has been used in this study. This has allowed us to search 
the ‘rule’ space for representatives of the universality classes. This search was fairly 
quick since most models display their asymptotic behaviour in short series. Here 
universality class refers to a differentiation simply by length scale exponents. We have 
chosen these rules to exemplify all possible symmetries. Of note is the fact that this 
search has provided another example in the ASSAW class which we show can be 
mapped onto one of the previously studied models. Apart from trivial cases we 
conclude that there are two isotropic classes (SA,W and SAW) and two anisotropic 
classes (DW and ASSAW). Spirality seems to be ‘relevant’ in both cases and we shall 
highlight the role of reflection symmetry in the differentiation of these classes. 

The models we have studied can be understood from the following ruminations. 
Consider the construction of a configuration of a self-avoiding walk on a square 
lattice. At each step we have three possible directions in which to proceed so long as 
the self-avoiding condition is satisfied. Now consider restricting the possible choices 
for continuation. The present step can be in one of the four lattice directions and for 
each of these directions there are 23 choices of constraint (reflecting the three possible 
ways of proceeding for the SAW). Hence there are (23)4=4096 possible constraints we 
can consider. Many produce trivial models and most give essentially one-dimensional 
results. In fact, we have found that there are only 11 rules in classes other than the 
directed or trivial ones. Figure 1 catalogues 12 representative cases which include 
most of these 11 rules and some of the directed and trivial classes so as to cover all 
universality classes. These were chosen from the much smaller number of ‘balanced’ 
rules that have the same number of north as south and west as east steps in their rules. 
All but one have the 180°, rotation symmetry necessary to give a non-directed rule and 
this condition reduces the rule space from 4096 to 64. Note that the self-avoiding 
constraint always takes precedence over the rule. Rule (a) is simply the unconstrained 
SAW while rule (d) gives pure spiral walks. Rules (g) and (i) are Manna’s three-choice 
anisotropic spiral and two-choice anisotropic spiral cases respectively. Rule (h) is also 
in the anisotropic spiral class. Rules (b) and (c) behave as the unconstrained SAW and 
(e), (f), (j), (k) and (1) are either directed or trivial in some fashion. We shall discuss 
these in more detail after giving the new results for the ASSAW class. 
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Figure 1. Each of the above diagrams illustrates a two-step rule for self-avoiding walks. In 
each case the bold line signifies the present state of the walk while the dashed lines the 
allowed continuations from thar given step. 

2. Anisotropic, spiral walks 

Whittington [16] has provided an argument for the value of the connective constants 
of the two-choice and three-choice models of Manna ( d e s  (g) and (i)). This was 
accomplished in part by considering a subset of configurations in which south or west 
steps are excluded. This is equivalent to considering the total rule space without self- 
avoidance. In both models one is left with a concatenation of staircase walks which are 
of differing types for the two models. For the three-choice model the walks are normal 
staircase walks that can move in the vertical or horizontal direction at each step while 
the two-choice case gives rise to staircase walks that are free to move vertically only if 
the previous step has been a horizontal one. It is simple to see that in the three-choice 
case a random walk version will have a major axis along the 45 degree line to the 
horizontal. Denoting this angle for the two-choice as Ob, its value can be derived from 
the two variable generating function for this type of staircase walk. The generating 
function for these horizontal-preferring staircase walks can be found from the 
recurrence relation 

C, =x(1+ G, + y + yC,) (4) 

where G, is the generating function for walks starting with a horizontal step and x ( y )  is 
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the fugacity attached to horizontal (vertical) steps. This can be solved immediately to 
give 
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4 1  + Y )  ,... G, = 1-x(l + y ) '  
Hence the full generating function is 

We can evaluate the average slope via the generating function as 
X 

Setting x = y  and noting that the generating function diverges at the golden mean 
1 

Y =-- + y  - ( v 3 - 1 ) / 2  

(7) 

we have 

Returning to the full models, one can evaluate for walks of any (given sufficient 
computer time) length an average angle of the line of maximum square end-to-end 
distance. One immediately can see that these values converge to O,,=n/4 and 
&= 0.364 86 . . . fairly quickly and hence we are confident that these values are exact 
when self-avoidance is included. 

We have enumerated two-choice and three-choice walks with end-to-end distances 
along the major and minor (perpendicular to those angles) axes up to lengths (n) 44 
and 32, respectively. The results are given in tables 1 and 2, respectively. These 
enumerations add new information to the old series and also increase the lengths 
considered slightly. For comparison, enumerations up to lengths 42 and 30 for the 
two-choice and three-choice models, respectively, both took approximately 9 CPU 

hours on an IBM RISC 6000/560. 
is plotted 

against (I?:)". The near-perfect straight line fit for this relationship clearly indicates 
that 

holds. This immediatzly enables us to discount the possibility that ASSAW is in either 
the spiral or SAW universality classes. We note here that because the angle is 45 
degrees for the three choice model Manna fortuitously extracted two exponents for 
that model and not for the other. 

Using the new enumerations we have extracted the best estimates for vII for each 
model. The best results using differential approximates is 

which differs little from earlier estimates [17]. The exponent estimates for the two 
models are in good correspondence. We offer no 'rational fraction' conjecture for this 
exponent although the existence of such a fraction is likely given the values of 
exponents in the other two-dimensional models. The differential approximants used 
were inhomogeneous second, third, and fourth order approximants with biasing. 

&=tan-'((3- f i)/2)-0.36486. (9) 

The first result from this data is contained in figure 2 where 

v,, = 2v, (10) 

~,=0.845(5) (11) 
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Table 1. 2-choice model: enumerations. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

~ 

32 

4 0.50000 
8 1.75000 

16 3.37500 
28 5.92857 
52 8.57692 
90 12.20000 

160 15.90000 
276 20.41304 
484 24.90083 
826 ~ 30.36804 

1434 35.601 12 
2438 41.84249 
4 194 47.845 49 
7 104 54.832 21 

12 150 61.518 19 
20 506 69.243 05 
34898 76.60554 
58740 85.018 35 
99568 . 93.031 17 

167 186 102.115 97. 
282468 110.753 57 
473318 . 120.48533 

. 797462 129.73252 
1333 866 140.091 39 
2241 980 149.93085 
3 744 048 160.900 06 
6279996 171.31701 

10472560 ~ 182.88080 
17 533 852 193.862 32 
29 202 420 206.006 26 
48 813 440 217.54041 
81 204 864 230.251 69 

135 541 920 242.32735 
225 249 074 255.594 16 
375 481 028 268.201 39 
623 395 676 282.01270 

1037947386 295.14229 
1 721 755 690 309.488 05 
2 863 621 286 ~ 323.131 33 
4746373644 338.00223 
7 886 384 910 352.151 25 

13 061 734 390 367.538 48 
21 683 197 766 382.185 85 

0.oM)oo 
0.25000 
0.75000 
1.50000 
2.38462 
3.577 78 
4.850 00 
6.398 55 
7.975 21 
9.888 62 

11.75453 
13.97047 
16.130 66 
18.636 82 
21.05942 
23.85048 
26.532 64 
29.58927 
32.52073 
35.83649 
39.00742 
42.57241 
45.97700 
49.783 36 
53.41487 
57.456.07 
61.30884 
65.57867 
69.647 74 
74.14059 
78.421 36 
83.132 24 
87.62045 
92.544 77 
97.236 60 

102.370 07 
107.262 00 
112.60073 
117.68942 
123.22981 
128.51222 
134.250 85 
139.724 15 

0.50000 
0.750 00 
1.12500 
1.642 86 
2.11538 
2.777 78 
3.40000 
4.181 16 
4.90909 
5.825 67 
6.659 69 
7.68007 
8.626 13 
9.748 87 

10.79309 
12.01882 
13.161 04 
14.48284 
15.71911 
17.13569 
18.46221 
19.97036 
21.385 08 
22.98226 
24.48265 
26.16679 
27.75075 
29.51978 
31.18550 
33.037 53 
34.783 30 
36.71665 
39.54090 
40.55399 
42.45532 
44.54666 

'46.52377 
48.69201 
50.743 67 
52.98755 

57.43094 
59.628 39 

55 .m 63 

l.oOo00 
2.50000 
4.50000 
7.571 43 

10.69231 
14.97778 
19.30000 
24.594 20 
29.80992 
36.193 70 
42.26081 
49.52256 
56.471 63 
64.581 08 
72.31128 
81.261 87 
89.766 58 
99.501 19 

108.750 28 
119.251 61 
129.215 78 

~140.45569 
151.11760 
163.073 66 
174.413 51 
187.066 85 
199.06776 
~212.40058 
225.047 82 
239.04379 
252.32371 
266.968 33 
280.86825 
296.148 15 
310.65671 
326.559 36 
341.66606 
358.18006 
373.875 00 
390.98978 
407.263 88 
424.969 43 
441.81424 

0.500 00 
1.789 34 
3.588 53 
6.382 91 
9.343 97 

13.38553' 
17.541 81 
22.61207 
27.672 24 
33.83567 
39.75259 
46.80651 
53.60578 
61.51666 
69.099 38 

86.21608 
95.763 81 

104.868 13 
115.18706 
125.00780 
136.069 16 
146.588 84 
158.36973 
169.56845 - 
182.04960 
193.910 42 
207.073 68 
219.581 81 
233.410 59 
246.55231 
261.031 91 
274.794 48 
289.911 33 
304.283 35 
320.02476 
334.995 68 
351.350 13 
366.910 00 
383.866 79 
400.006 51 
417.555 54 
434.266 62 

77.85747 

0.50000 
0.71066 
0.911 47 
1.188 52 
1.34834 
1.59225 
1.758 19 
1.982 13 
2.13767 
2.35804 
2.508 22 
2.71605 
2.865 84 
3.06442 
3.211 89 
3.40441 
3.550 50 
3.737 38 
3.882 I5 
4.064 55 
4.207 99 
4.386 52 
4.52876 
4.703 93 
4.845 05 
5.01725 
5.157 33 
5.32690 
5.46601 
S.633 19 

5.93642 
6.07377 
6.236 82 
6.373 36 
6.53460 
6.67038 
6.82993 
6.96499 
7.122 98 
7.25736 
7.413 89 
7.54762 

5.771 40 

44 35 887 723 320 398.081 29 145.657 87 62.020 04 460.101 33 452.39% 55 7.70278 

Assuming confluent exponents tended to stablize the leading exponent, although 
there was no indication of a simple confluent correction term. This can be seen as an 
indication that the precise asymptotic form cannot be approximated by differential 
approximants, and that therefore the extrapolated exponent values have to be 
interpreted carefully. We also considered the possibility of logarithmic corrections to 
the power law as in the spiral case [12]. We found that there is no consistent way of 
assigning a value to the power of such a confluent logarithmic factor if, with the 
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Table 2. 3-choice model enumerations 

1 4 
2 10 
3 24 
4 54 
5 124 
6 272 
7 608 
8 1314 
9 2 884 

10 6 178 
11 13 388 
12 28 486 
13 611 68 
14 129 446 
15 276 020 
16 581 572 
17 1233 204 
18 2 588 906 
19 5464816 
20 11437088 
21 24 050 760 
22 50 201 640 
23 ' 105228216 
24 219139194 
25 458067944 
26 951999224 
27 1 985 163 932 
28 4118332532 
29 8 569 510 852 
30 17 749 322 414 
31 36 863 339 520 
32 76 241 288 094 

~~ ~~ 

0.500 00 
1.400 00 
2 . m  00 
3.925 92 
5.403 22 
7.25000 
9.06578 

11.28767 
13,42649 
15.97831 
18.42411 
21.28442 
24.019 35 
27.173 13 
30.18402 
33.61769 
36.894 14 
40.,596 82 
44.129 53 
48.092 10 
51.87334 
56.08756 
60.110 75 
64.56951 
68.828 64 
73.525 69 
78.015 48 
82.945 13 
87.660 86 
92.81800 
97.755 32 

103.13535 

~~ ~~~ 

0.00000 
0.20000 
0.666 66 
1.40740 
2.32258 
3.51470 
4.80263 
6.39269 
8.022 19 
9.96665 

11.91514 
14.18788 
16.435 65 
19.01773 
21.549 94 
24.425 46 
27.230 38 
30,386 54 
33.45403 
36.880 19 
40.201 77 
43.88858 
47.45704 
51.39643 
55.205 30 
59.39025 
63.433 81 
67.857 98 
72.1.31 19 
76.788 92 
81.287 10 

186.173 32 

0.50000 
1.40000 
2.50000 
3.925 92 
5.40322 
7.250 00 
9.065 78 

11.287 67 
13.42649 
15.97831 
18.424 11 
21.284 42 
24.01935 
27.173 13 
30.184 02 
33.61769 
36.894 14 
40.59682 
44.12953 
48.092 10 
51.87334 
56.08756 
60.11075 
64.56951 
68.82864 
73.525 69 
78.015 48 
82.945 13 
87.66086 
92.81800 
97.755 32 ,, 

103.13535 

1.ooooo 
2.80000 
5.00000 
7.851 85 

10.80645 
14.50000 
18.131 57 
22.57534 
26.852 98 
31.95662 
36.848 22 
42.568 84 
48.03871 
54.346 27 
60.36804 
67.235 39 
73.788 29 
81.19364 
88.25906 
96.18420 

103.74668 
112.175 13 
120.221 51 
129.13902 
137.657 28 
147.051 39 
156.MO 96 
165.89026 
175.321 72 
185.63600 
195.510 64 
206.270 70 

~~ ~~~ 

0.50000 
1.60000 
3.16666 
5.333 33 
7.725 80 

10.76470 
13.868 42 
17.680 36 
21.44868 
25.944 96 
30.33925 
35.472 30 
40.455 00 
46.190 87 
51.733 96 
58.043 16 
64.12453 
70.983 37 
77.583 56 
84.97229 
92.075 12 
99.976 14 

107.567 80 
115.965 94 
1'24.033 94 
132.915 95 
141.449 30 
150.803 11 
159.79205 
169.60692 
179.042 43 
189.308 67 

0.50000 
1.20000 
1.83333 
2.51851 
3.08064 
3.73529 
4.263 15 
4.89497 
5.40429 
6.011 65 
6.508 96 
7.096 53 
7.583 70 
8.155 40 
8.63407 
9.19223 
9.66375 

10.21027 
10.67549 
11.211 90 
11.671 56 
12.19898 
12.653 70 
13.17307 
13.62333 
14.13544 
14.581 66 
15.087 14 
15.529 68 
16.D2909 
16.46822 
16.96204 

present data, one fits using each model, and to each of the major and minor end-to- 
end distance enumerations. The only other possibility left is that the series are so short 
compared to where the true asymptotic behaviour sets in that there exist turning 
points and other exotic changes in the exponent estimates. We do caution that this 
does happen in the case of spiral walks when considering series of length 40 or so! We 
note that the addition of the logarithmic confluency in the fitting form decreases the 
exponent estimates and so move them away from the directed values. Assuming that 
the ASSAW are in a separate universality class (the possibility, though remote, remains 
that they are in the directed class with added logarithmic corrections) this demon- 
strates that there is competition between the spirality and the anisotropy, and 
indicates a particular fixed point structure in a renormalisation group study. 

3. Discussion 

In the previous section we have given several results on the class of ASSAW which 
indicate that it is a separate universality class. Naturally two questions arise. Given the 



20- 

15- 

a 
1 0 -  

5- 

rule space of two step restrictions on the square lattice how many universality classes 
are there? Secondly. what factors determine the universality class of a particular rule? 
We shaU attempt to answer these two questions here. 

Table 3 catalogues the length scale exponents for the 12 models of figure 1. They 
fall into seven classes of which three have vll=,l while one (rule (f)) is completely 
trivial. The important classes are those previously mentioned SAW (yl = v, =3/4); 
SSAW (vlI=vl=1/2); DW ( v ~ = l , v , = l / Z ) :  A S S A W ~ ( ~ ~ ~ = O . S ~ ~ ,  v,=0.4225). There is 
only one member of the SSAW class and four members of SAW (the fourth being a 90 
degree rotation of rule (b)). Rule (h) is a new member of the ASSAW class although we 
have subsequently found that it can be mapped exactly onto the two-choice model 
(appendix A). This gives six members of the ASSAW while the rest of the 4096 rules are 
either in the directed classes or one of the trivial classes (where either one exponent is 
0 or both are 1). The small number of non-trivial rules-has clearly facilitated ourwork. 
Given that these are indeed the only classes (we have not done an exhaustive study); 
we proceed to the second question. 

One condition for producing a non-trivial rule is that there must be sufficient 
options in each direction. For example, any rule with one direction blocked altogether 
will be directed. Balance is also a criterion: rules that do not have equal numbers of 

I \ I I I I I (. 
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Table3. Length scale exponents and symmetries for 12 representative rules. 

Rule yu V ,  Rotation by 909 Rotation by 180" Reflection 

(a) 3/4 3/4 Y Y Y 
(b) 3/4 3/4 n Y Y 
(c) 314 314 Y Y Y 
(d) 1/2(log) 1/2(log) y Y " 
(4 1 0 n Y n 
(f) 0 0 Y Y n 
(g) 0.845(5) 0.423(3) n Y n 
(h) 0.845(5) 0.423(3) n Y n 
(i) 0.845(5) 0.423(3) n Y n 

112 n Y Y 
112 n n n 
1 Y Y Y 

0') 1 
0 1 
(1) 1 

possible steps in opposite directions of the two axes will also be directed. These 
conditions significantly reduce the number of possible rules. 

The symmetries of the non-trivial rules provide a sign of their universality class. 
Table 3 catalogues the symmetries possessed by the 12 rules of figure 1. All the non- 
trivial rules possess the symmetry of 180"-rotation and so the absence of this symmetry 
can be used to exclude the unbalanced rules mentioned before and rules similar to rule 
(k) which are balanced but possess no symmetries (that is all rules where (RE,y}n#O). 
Then the rules in the SSAW and ASSAW classes can be distinguished from the SAW class 
rules by the lack of a reflection symmetry. (Note that in two dimensions any spirality 
breaks all reflection symmetries. This is not the case in three dimensions and it seems 
that there is a three-dimensional two-step rule with reflection symmetry but also 
spirality that falls into the three-dimensional SAW class [15].) However, there are rules 
that fall in the directed or trivial classes that possess the same symmetries as those in 
the non-trivial classes. If one could exclude all members of the DW then one could 
decide on the universality class simply by symmetry arguments. That is, it would leave 
only those rules in the SAW, SSAW and ASSAW classes and the occurrence of reflection 
symmetry then uniquely determines the SAW class and the possession of 90" rotation 
symmetry distinguishes the SSAW class rule from the ASSAW rules. Let us discuss briefly 
those rules in the directedltrivial classes that possess the same symmetries as the non 
trivial rules. If they do not have a reflection symmetry such as rules (e) and (f) then 
they seem to always be trivial (one exponent is zero and the number of configurations 
is bounded for any length). If, on the other hand they do possess reflection symmetry 
like rules (j) and (1) they can be distinguished from the SAW class because there are 
clearly no configurations that have steps in all four directions and this indicates 
directedness. Hence, we have given a recipe so that any rule can be classified using 
quickly obtainable information (directed models are easily identified by inspection) 
and the symmetries possessed by the rules. 

To summarize: In the present article we have explained that anisotropic walks are 
truly anisotropic with respect to length scale exponents essentially because they are 
concatenations of types of self-avoiding staircase walks. Also, that spirality, which is 
linked to the absence of reflection symmetry, is a relevant constraint in self-avoiding 
walk models when coupled with anisotropy: it would seem that the ASSAW universality 
class is different to the DW class. The presence or absence of reflection and rotation 
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symmetries delineates the non-trivial self-avoiding restricted-rule walks in two 
dimensions. 
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Appendix. Proof of mapping rule (h) onto rule (i) 

Here we prove that the configurations produced by rule (h) can be mapped bijectively 
onto the configurations of rule (i) (Manna’s two-choice rule). Each rule-(i) configur- 
ation can be produced from rule (h) by traversing the configuration backwards. 
Proof. Consider a configuration of rule (h). After a step 

east (E) the walk can continue N, S ,  or E, 
west (W) the walk can continue N, S ,  or W; 
north (N) the walk can continue E; 
south ( S )  the walk can continue W. 

east (E) can come from the N, or the E; 
west (W) can come from the S ,  or the W; 
north (N) can~come from the E, or the W; 
south ( S )  can come from the E, or the W. 

Hence a step from the 

Now consider making the step in reverse: this is done precisely according to rule (i). 
The argument is clearly symmetric and therefore, each configuration produced by rule 
(h) is produced by rule (i) in reverse and visa versa. Hence, the configurations are 
identical, ignoring the rooting, which is irrelevant for physical properties. 
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