On the symmetry classes of planar self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 266615
(http://iopscience.iop.org/0305-4470/26/23/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:10

Please note that terms and conditions apply.

On the symmetry classes of planar self-avoiding walks

A J Guttmann, T Prellberg and A L Owczarek
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

Received 29 June 1993

Abstract

We present new results on the class of anisotropic, spiral walks in two dimensions. We find that these are directed problems in the sense that the usual relation, $\nu_{\|}=2 \nu_{\perp}$, holds between the length scale exponents. In contradistinction, however, they do not seem to fall in the usual directed universality class ($v_{\|}=1$). Motivated by this, the universality classes of self-avoiding walks (saw) on the square lattice are discussed. We argue that of the 8^{4} models that exist by restricting the possible two step configurations there are four major categories with a total of seven generic types. The importance of refection symmetry in this classification is discussed.

1. Introduction

The problem of quantifying the properties of self-avoiding walks has received continued widespread attention, especially since their asymptotic behaviour was seen as a critical phenomenon in polymer science [1]. There has been much accomplished in the two-dimensional scene where several exact results are believed to hold [2, 3]. In the quest for a better understanding of isotropic walks (SAW), many variations on selfavoiding walks have been studied including directed (DW) [4-10], spiral (SSAW) [11, 12] and anisotropic spiral (ASSAW) walks [13-17]. While many exact results are known about the first two of these groups, the last has resisted an analytic approach and has been the least studied. Often the most interesting quantity in these problems is the mean square end-to-end distance (or radius of gyration) $\left\langle R_{N}^{2}\right\rangle$ for walks of length N. This is expected to scale with a power law; i.e.

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \sim N^{2 v} \tag{1}
\end{equation*}
$$

possibly with a confluent logarithmic factor.
From the work of Nienhuis [2,3] the exact value of v is generally accepted to be $\frac{3}{4}$ for SAW and the latest series work confirms this prediction [18]. For directed walks, Cardy [7] has shown that all such problems should have two exponents: one related to the preferred direction of the walk, $v_{\|}$, and one perpendicular to it, v_{\perp}, and that these should be 1 and $\frac{1}{2}$ respectively. This result has been found in the exact solutions [19] of directed problems. In the isotropic spiral case Blöte and Hilhorst [12] have shown

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \sim N \log N \tag{2}
\end{equation*}
$$

and so $v=\frac{1}{2}$. Lastly, the numerical work on anisotropic spiral walks [13, 15] has provided estimates for v around 0.85 , which is not close to any of the other results. For
one model in this class a second exponent [13] at approximately half the major value was found. This however, was not explained fully and the conclusion of [13] was that there were isotropic members of this class. In the first part of this paper we show that this is not the case. We provide convincing numerical evidence that there exists two exponents for the models of this class, and provide an argument that gives the angle of the preferred direction exactly along the lines of [16]. The relationship

$$
\begin{equation*}
v_{\|}=2 v_{\perp} \tag{3}
\end{equation*}
$$

holds for the exponents defined in the correct directions. Apparently, however, they do not have the directed values, and hence these models are not in the directed universality class:

Now, given the advanced state of knowledge about these models provided by previous work we feel that it is apposite to provide a discussion of the universality classes of these models here. Hence, in the second part of this paper an investigation of the models obtained by considering representatives of all 'two-step' rules has been undertaken. Some of these, as well as similar models have been previously considered by Manna [13, 14]. Exact enumeration coupled with the analysis technique of differential approximants has been used in this study. This has allowed us to search the 'rule' space for representatives of the universality classes. This search was fairly quick since most models display their asymptotic behaviour in short series. Here universality class refers to a differentiation simply by length scale exponents. We have chosen these rules to exemplify all possible symmetries. Of note is the fact that this search has provided another example in the ASSAW class which we show can be mapped onto one of the previously studied models. Apart from trivial cases we conclude that there are two isotropic classes (SAW and ssaw) and two anisotropic classes (Dw and ASSAW). Spirality seems to be 'relevant' in both cases and we shall highlight the tole of reflection symmetry in the differentiation of these classes.

The models we have studied can be understood from the following ruminations. Consider the construction of a configuration of a self-avoiding walk on a square lattice. At each step we have three possible directions in which to proceed so long as the self-avoiding condition is satisfied. Now consider restricting the possible choices for continuation. The present step can be in one of the four lattice directions and for each of these directions there are 2^{3} choices of constraint (reflecting the three possible ways of proceeding for the sAw). Hence there are $\left(2^{3}\right)^{4}=4096$ possible constraints we can consider. Many produce trivial models and most give essentially one-dimensional results. In fact, we have found that there are only 11 rules in classes other than the directed or trivial ones. Figure 1 catalogues 12 representative cases which include most of these 11 rules and some of the directed and trivial classes so as to cover all universality classes. These were chosen from the much smaller number of 'balanced' rules that have the same number of north as south and west as east steps in their rules. All but one have the 180°, rotation symmetry necessary to give a non-directed rule and this condition reduces the rule space from 4096 to 64 . Note that the self-avoiding constraint always takes precedence over the rule. Rule (a) is simply the unconstrained sAw while rule (d) gives pure spiral walks. Rules (g) and (i) are Manna's three-choice anisotropic spiral and two-choice anisotropic spiral cases respectively. Rule (h) is also in the anisotropic spiral class. Rules (b) and (c) behave as the unconstrained SAW and (e), (f), (j), (k) and (l) are either directed or trivial in some fashion. We shall discuss these in more detail after giving the new results for the ASSAW class.

Figure 1. Each of the above diagrams illustrates a two-step rule for self-avoiding walks. In each case the bold line signifies the present state of the walk while the dashed lines the allowed continuations from that given step.

2. Anisotropic, spiral walks

Whittington [16] has provided an argument for the value of the connective constants of the two-choice and three-choice models of Manna (rules (g) and (i)). This was accomplished in part by considering a subset of configurations in which south or west steps are excluded. This is equivalent to considering the total rule space without selfavoidance. In both models one is left with a concatenation of staircase walks which are of differing types for the two models. For the three-choice model the walks are normal staircase walks that can move in the vertical or horizontal direction at each step while the two-choice case gives rise to staircase walks that are free to move vertically only if the previous step has been a horizontal one. It is simple to see that in the three-choice case a random walk version will have a major axis along the 45 degree line to the horizontal. Denoting this angle for the two-choice as $\theta_{2 c}$, its value can be derived from the two variable generating function for this type of staircase walk. The generating function for these horizontal-preferring staircase walks can be found from the recurrence relation

$$
\begin{equation*}
G_{x}=x\left(1+G_{x}+y+y G_{x}\right) \tag{4}
\end{equation*}
$$

where G_{x} is the generating function for walks starting with a horizontal step and $x(y)$ is
the fugacity attached to horizontal (vertical) steps. This can be solved immediately to give

$$
\begin{equation*}
G_{x}=\frac{x(1+y)}{1-x(1+y)} \tag{5}
\end{equation*}
$$

Hence the full generating function is

$$
\begin{equation*}
G(x, y)=1+G_{x}+y\left(1+G_{x}\right)=\frac{1+y}{1-x(1+y)} \tag{6}
\end{equation*}
$$

We can evaluate the average slope via the generating function as

$$
\begin{equation*}
\tan \left(\theta_{2 \mathrm{c}}\right)=x \frac{\partial G}{\partial y} / y \frac{\partial G}{\partial x}=\frac{x}{y(1+y)^{2}} \tag{7}
\end{equation*}
$$

Setting $x=y$ and noting that the generating function diverges at the golden mean

$$
\begin{equation*}
y=\frac{1}{1+y}=(\sqrt{5}-1) / 2 \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\theta_{2 c}=\tan ^{-1}((3-\sqrt{5}) / 2) \approx 0.36486 \tag{9}
\end{equation*}
$$

Returning to the full models, one can evaluate for walks of any (given sufficient computer time) length an average angle of the line of maximum square end-to-end distance. One immediately can see that these values converge to $\theta_{30}=\pi / 4$ and $\theta_{2 c}=0.36486 \ldots$ fairly quickly and hence we are confident that these values are exact when self-avoidance is included.

We have enumerated two-choice and three-choice walks with end-to-end distances along the major and minor (perpendicular to those angles) axes up to lengths (n) 44 and 32 , respectively. The results are given in tables 1 and 2 , respectively. These enumerations add new information to the old series and also increase the lengths considered slightly. For comparison, enumerations up to lengths 42 and 30 for the two-choice and three-choice models, respectively, both took approximately 9 cpu hours on an IBM RISC 6000/560.

The first result from this data is contained in figure 2 where $\sqrt{\left\langle R_{\|}^{2}\right\rangle_{n}}$ is plotted against $\left\langle R_{\mathrm{L}}^{2}\right\rangle_{n}$. The near-perfect straight line fit for this relationship clearly indicates that

$$
\begin{equation*}
v_{\|}=2 v_{\perp} \tag{10}
\end{equation*}
$$

holds. This immediately enables us to discount the possibility that AsSaw is in either the spiral or SAW universality classes. We note here that because the angle is 45 degrees for the three choice model Manna fortuitously extracted two exponents for that model and not for the other.

Using the new enumerations we have extracted the best estimates for $\nu_{\|}$for each model. The best results using differential approximates is

$$
\begin{equation*}
v_{\|}=0.845(5) \tag{11}
\end{equation*}
$$

which differs little from earlier estimates [17]. The exponent estimates for the two models are in good correspondence. We offer no 'rational fraction' conjecture for this exponent although the existence of such a fraction is likely given the values of exponents in the other two-dimensional models. The differential approximants used were inhomogeneous second, third, and fourth order approximants with biasing.

Table 1. 2-choice model: enumerations.

n	c_{n}	$\left\langle R_{\chi}^{2}\right\rangle_{n}$	$\left\langle R_{r} R_{y}\right\rangle_{n}$	$\left\langle R_{y}^{2}\right\rangle_{n}$	$\left\langle R^{2}\right\rangle_{n}$	$\left\langle R_{\text {¢ }}\right\rangle_{n}$	$\left\langle R^{2}\right\rangle_{n}$
1	4	0.50000	0.00000	0.50000	1.00000	0.50000	0.50000
2	8	1.75000	-0.25000	0.75000	2.50000	1.78934	0.71066
3	16	3.37500	0.75000	1.12500	4.50000	3.58853	0.91147
4	28	5.92857	1.50000	1.64286	7.57143	6.38291	1.18852
5	52	8.57692	2.38462	2.11538	10.69231	9.34397	1.34834
6	90	12.20000	3.57778	2.77778	14.97778	13.38553.	1.59225
7	160	15.90000	4.85000	3.40000	19.30000	17.54181	1.75819
8	276	20.41304	6.39855	4.18116	24.59420	22.61207	1.98213
9	484	24.90083	7.97521	4.90909	29.80992	27.67224	2.13767
10	826	30.36804	9.88862	5.82567	36.19370	33.83567	2.35804
11	1434	35.60112	11.75453	6.65969	42.26081	39.75259	2.50822
12	2438	41.84249	13.97047	7.68007	49.52256	46.80651	2.71605
13	4194	47.84549	16.13066	8.62613	56.47163	53.60578	2.86584
14	7104	54.83221	18.63682	9.74887	64.58108	61.51666	3.06442
15	12150	61.51819	21.05942	10.79309	72.31128	69.09938	3.21189
16	20506	69.24305	23.85048	12.01882	81.26187	77.85747	3.40441
17	34898	76.60554	26.53264	13.16104	89.76658	86.21608	3.55050
18	58740	85.01835	29.58927	14.48284	99.50119	95.76381	3.73738
19	99568	93.03117	32.52073	15.71911	108.75028	- 104.86813	3.88215
20	167186	102.11592	35.83649	17.13569	119.25161	115.18706	4.06455
21	282468	110.75357	39.00742	18.46221	129.21578	125.00780	4.20799
22	473318	120.48533	42.57241	19.97036	-140.45569	136.06916	4.38652
23	797462	129.73252	45.97700	21.38508	151.11760	146.58884	4.52876
24	1333866	140.09139	49.78336	22.98226	163.07366	158.36973	4.70393
25	2241980	149.93085 .	53.41487	24.48265	174.41351	169.56845	4.84505
26	3744048	160.90006	57.456 .07	26.16679	187.06685	182.04960	5.01725
27	6279996	171.31701	61.30884	27.75075	199.06776	193.91042	5.15733
28	10472560°	182.88080	65.57867	29.51978	212.40058	207.07368	5.32690
29	17533852	193.86232	69.64774	31.18550	225.04782	219.58181	5.46601
30	29202420	206.00626	74.14059	33.03753	239.04379	233.41059	5.63319
31	48813440	217.54041	78.42136	34.78330	252.32371	246.55231	5.77140
32	81204864	230.25169	83.13224	36.71665	266.96833	261.03191	5.93642
33	135541920	242.32735	87.62045	39.54090	280.86825	274.79448	6.07377
34	225249074	255.59416	92.54477	40.55399	296.14815	289.91133	6.23682
35	375481028	268.20139	97.23660	42.45532	310.65671	304.28335	6.37336
36	623395676	282.01270	102.37007	44.54666	326.55936	320.02476	6.53460
37	1037947386	295.14229	107.26200	'46.52377	-341.66606	334.99568	6.67038
38	1721755690	309.48805	112.60073.	48.69201	358.18006	351.35013	6.82993
39	2863621286	323.13133	117.68942	50.74367	373.87500	366.91000	6.96499
40	4746373644	338.00223 .	123.22981	52.98755	390.98978	383.86679	7.12298
41	7886384910	352.15125	128.51222	55.11263	407.26388	400.00651	7.25736
42	13061734390	367.53848	134.25085	57.43094	424.96943	417.55554	7.41389
43	21683197766	382.18585	139.72415	59.62839	441.81424	434.26662	7.54762
44	35887723320	398.08129	145.65787	62.02004	460.10133	452.39855	7.70278

Assuming confluent exponents tended to stablize the leading exponent, although there was no indication of a simple confluent correction term. This can be seen as an indication that the precise asymptotic form cannot be approximated by differential approximants, and that therefore the extrapolated exponent values have to be interpreted carefully. We also considered the possibility of logarithmic corrections to the power law as in the spiral case [12]. We found that there is no consistent way of assigning a value to the power of such a confluent logarithmic factor if, with the

Table 2. 3-choice model: enumerations.

n	c_{n}	$\left\langle R_{x}^{2}\right\rangle_{n}$	$\left\langle R_{x} R_{y}\right\rangle_{n}$	$\left\langle R_{y}^{2}\right\rangle_{n}$	$\left\langle R^{2}\right\rangle_{n}$	$\left\langle R_{\\|}^{2}\right\rangle_{n}$	$\left\langle R^{2}{ }_{\nu}\right\rangle_{n}$
1	4	0.50000	0.00000	0.50000	1.00000	0.50000	0.50000
2	10	1.40000	0.20000	1.40000	2.80000	1.60000	1.20000
3	24	2.50000	0.66666	2.50000	5.00000	3.16666	1.83333
4	54	3.92592	1.40740	3.92592	7.85185	5.33333	2.51851
5	124	5.40322	2.32258	5.40322	10.80645	7.72580	3.08064
6	272	7.25000	3.51470	7.25000	14.50000	10.76470	3.73529
7	608	9.06578	4.80263	9.06578	18.13157	13.86842	4.26315
8	1314	11.28767	6.39269	11.28767	22.575 .34	17.68036	4.89497
9	2884	13.42649	8.02219	13.42649	26.85298	21.44868	5.40429
10	6178	15.97831	9.96665	15.97831	31.95662	25.94496	6.01165
11	13388	18.42411	11.91514	18.42411	36.84822	30.33925	6.50896
12	28486	21.28442	14.18788	21.28442	42.56884	35.47230	7.09653
13	61168	24.01935	16.43565	24.01935	48.03871	40.45500	7.58370
14	129446	27.17313	19.01773	27.17313	54.34627	46.19087	8.15540
15	276020	30.18402	21.54994	30.18402	60.36804	51.73396	8.63407
16	581572	33.61769	24.42546	33.61769	67.23539	58.04316	9.19223
17	1233204	36.89414	27.23038	36.89414	73.78829	64.12453	9.66375
18	2588906	40.59682	30.38654	40.59682	81.19364	70.98337	10.21027
19	5464816	44.12953	33.45403	44.12953	88.25906	77.58356	10.67549
20	11437088	48.09210	36.88019	48.09210	96.18420	84.97229	11.21190
21	24050760	51.87334	40.20177	51.87334	103.74668	92.07512	11.67156
22	50201640	56.08756	43.88858	56.08756	112.17513	99.97614	12.19898
23	105228216	60.11075	47.45704	60.11075	120.22151	107.56780	12.65370
24	219139194	64.56951	51.39643	64.56951	129.13902	115.96594	13.17307
25	458067944	68.82864	55.20530	68.82864	137.65728	124.03394	13.62333
26	951999224	73.52569	59.39025	73.52569	147.05139	132.91595	14.13544
27	1985163932	78.01548	63.43381	78.01548	156.03096	141.44930	14.58166
28	4118332532	82.94513	67.85798	82.94513	165.89026	150.80311	15.08714
29	8569510852	87.66086	72.13119	87.66086	175.32172	159.79205	15.52968
30	17749322414	92.81800	76.78892	92.81800	185.63600	169.60692	16.02909
31	36863339520	97.75532	81.28710	97.75532.	195.51064	179.04243	16.46822
32	76241288094	103.13535	186.17332	103.13535	206.27070	189.30867	16.96204

present data, one fits using each model, and to each of the major and minor end-toend distance enumerations. The only other possibility left is that the series are so short compared to where the true asymptotic behaviour sets in that there exist turning points and other exotic changes in the exponent estimates. We do caution that this does happen in the case of spiral walks when considering series of length 40 or so! We note that the addition of the logarithmic confluency in the fitting form decreases the exponent estimates and so move them away from the directed values. Assuming that the ASSAW are in a separate universality class (the possibility, though remote, remains that they are in the directed class with added logarithmic corrections) this demonstrates that there is competition between the spirality and the anisotropy, and indicates a particular fixed point structure in a renormalisation group study.

3. Discussion

In the previous section we have given several results on the class of ASSAW which indicate that it is a separate universality class. Naturally two questions arise. Given the

Figure 2. This figure plots the parallel end-to-end distance against the square of the perpendicular end-to-end distance for both the two choice and three choice models of Manna. The straight line is the least squares fit for each set of points. The fit is remarkably good even for short walks.
rule space of two step restrictions on the square lattice how many universality classes are there? Secondly, what factors determine the universality class of a particular rule? We shall attempt to answer these two questions here.

Table 3 catalogues the length scale exponents for the 12 models of figure 1 . They fall into seven classes of which three bave $\nu_{\|}=1$ while one (rule (f)) is completely trivial. The important classes are those previously mentioned: sAw ($\nu_{\|}=v_{\perp}=3 / 4$); SSAW ($v_{\|}=v_{\perp}=1 / 2$); DW ($\nu_{\|}=1, v_{\perp}=1 / 2$); ASSAW ($v_{\|}=0.845, v_{\perp}=0.4225$). There is only one member of the SSAW class and four members of SAw (the fourth being a 90 degree rotation of rule (b)). Rule (h) is a new member of the Assaw class although we have subsequently found that it can be mapped exactly onto the two-choice model (appendix A). This gives six members of the ASSAW while the rest of the 4096 rules are either in the directed classes or one of the trivial classes (where either one exponent is 0 or both are 1). The small number of non-trivial rules has clearly facilitated our work. Given that these are indeed the only classes (we have not done an exhaustive study); we proceed to the second question.

One condition for producing a non-trivial rule is that there must be sufficient options in each direction. For example, any rule with one direction blocked altogether will be directed. Balance is also a criterion: rules that do not have equal numbers of

Table 3. Length scale exponents and symmetries for 12 representative rules.

Rule	ν_{1}	v_{\perp}	Rotation by 90°	Rotation by 180°	Reflection
(a)	3/4	3/4	y	y	y
(b)	3/4	3/4	n	y	y
(c)	3/4	3/4	y	y	y
(d)	$1 / 2$ (log)	$1 / 2(\log)$	y	y	n
(e)	1	0	n	y	n
(f)	0	0	y	y	n
(g)	0.845 (5)	0.423 (3)	n	y	n
(h)	0.845 (5)	0.423 (3)	n	y	n
(i)	0.845 (5)	0.423 (3)	n	y	n
(j)	1	1/2	\square	y	y
(k)	1	1/2	n	n	n
(1)	1	1	y	y	y

possible steps in opposite directions of the two axes will also be directed. These conditions significantly reduce the number of possible rules.

The symmetries of the non-trivial rules provide a sign of their universality class. Table 3 catalogues the symmetries possessed by the 12 rules of figure 1 . All the nontrivial rules possess the symmetry of 180°-rotation and so the absence of this symmetry can be used to exclude the unbalanced rules mentioned before and rules similar to rule (k) which are balanced but possess no symmetries (that is all rules where $\left\langle R_{x, y}\right\rangle_{n} \neq 0$). Then the rules in the SSAW and ASSAW classes can be distinguished from the SAw class rules by the lack of a reflection symmetry. (Note that in two dimensions any spirality breaks all reflection symmetries. This is not the case in three dimensions and it seems that there is a three-dimensional two-step rule with reflection symmetry but also spirality that falls into the three-dimensional SAw class [15].) However, there are rules that fall in the directed or trivial classes that possess the same symmetries as those in the non-trivial classes. If one could exclude all members of the Dw then one could decide on the universality class simply by symmetry arguments. That is, it would leave only those rules in the SAW, SSAW and ASSAW classes and the occurrence of reflection symmetry then uniquely determines the SAW class and the possession of 90° rotation symmetry distinguishes the ssaw class rule from the assaw rules. Let us discuss briefly those rules in the directed/trivial classes that possess the same symmetries as the non trivial rules. If they do not have a reflection symmetry such as rules (e) and (f) then they seem to always be trivial (one exponent is zero and the number of configurations is bounded for any length). If, on the other hand they do possess reflection symmetry like rules (j) and (1) they can be distinguished from the saw class because there are clearly no configurations that have steps in all four directions and this indicates directedness. Hence, we have given a recipe so that any rule can be classified using quickly obtainable information (directed models are easily identified by inspection) and the symmetries possessed by the rules.

To summarize: In the present article we have explained that anisotropic walks are truly anisotropic with respect to length scale exponents essentially because they are concatenations of types of self-avoiding staircase walks. Also, that spirality, which is linked to the absence of reflection symmetry, is a relevant constraint in self-avoiding walk models when coupled with anisotropy: it would seem that the ASSAW universality class is different to the DW class. The presence or absence of reflection and rotation
symmetries delineates the non-trivial self-avoiding restricted-rule walks in two dimensions.

Acknowledgments

The authors thank R Brak for helpful discussions and are grateful to the Australian Research Council for financial support.

Appendix. Proof of mapping rule (h) onto rule (i)

Here we prove that the configurations produced by rule (h) can be mapped bijectively onto the configurations of rule (i) (Manna's two-choice rule). Each rule-(i) configuration can be produced from rule (h) by traversing the configuration backwards.

Proof. Consider a configuration of rule (h). After a step
east (E) the walk can continue N, S, or E;
west (W) the walk can continue N, S, or W;
north (N) the walk can continue E ;
south (S) the walk can continue W.
Hence a step from the
east (E) can come from the N, or the E;
west (W) can come from the S, or the W;
north (N) can come from the E , or the W ;
south (S) can come from the E, or the W.
Now consider making the step in reverse: this is done precisely according to rule (i). The argument is clearly symmetric and therefore, each configuration produced by rule (h) is produced by rule (i) in reverse and visa versa. Hence, the configurations are identical, ignoring the rooting, which is irrelevant for physical properties.

References

[1] de Gennes P-G 1972 Phys. Lett. 38A 339
[2] Nienhuis B 1982 Phys. Rev. Lett. 491062
[3] Nienhuis B 1984 J. Stat. Phys. 34731
[4] Fisher M E and Sykes M F 1959 Phys. Rev. 11445
[5] Grassberger P 1982 Z. Phys. B 48255
[6] Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
[7] Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
[8] Redner S and Majid I 1983 J. Phys. A:Math. Gen. 16 L307
[9] Szpilka A M 1983 J. Phys. A: Math. Gen. 162833
[10] Manna S S 1985 J. Phys. A: Math. Gen. 18 L255
[11] Guttmann A J and Wormald N 1984 J. Phys. A: Math. Gen. 17 L271
[12] Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
[13] Manna S S 1984 J. Phys. A: Math. Gen 17 L899
[14] Manna S S and Chakrabarti B K 1984 J. Phys. A: Math. Gen. 173237
[15] Guttmann A J and Wallace K J 1985 J. Phys. A: Math. Gen. 18 L1049
[16] Whittington S G 1985 Phys. A: Math. Gen. 18 L67
[17] Guttmann A J and Wallace K J 1986 J Phys. A: Math Gen. 191645
[18] Guttmann A J and Wang J 1991 J. Phys. A: Math. Gen. 243107
[19] Privman V and Švrakic 1989 Directed models of polymers, interfaces, and clusters: scaling and finitesize properties vol 338 Lecture Notes in Physics (Berlin: Springer)

